Churn Prediction in Telecommunications Industry. A Study Based on Bagging Classifiers

نویسندگان

  • Antonio Canale
  • Nicola Lunardon
چکیده

Churn rate refers to the proportion of contractual customers who leave a supplier during a given time period. This phenomenon is very common in highly competitive markets such as telecommunications industry. In a statistical setting, churn can be considered as an outcome of some characteristics and past behavior of customers. In this paper, churn prediction is performed considering a real dataset of an European telecommunications company. An appealing parallelized version of bagging classifiers is used leading to a substantial reduction of the classification error rates. The results are detailed discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Bagging and Boosting Classification Trees to Predict Churn

In this paper, bagging and boosting techniques are proposed as performing tools for churn prediction. These methods consist of sequentially applying a classification algorithm to resampled or reweigthed versions of the data set. We apply these algorithms on a customer database of an anonymous U.S. wireless telecom company. Bagging is easy to put in practice and, as well as boosting, leads to a ...

متن کامل

Churn Prediction for Game Industry Based on Cohort Classification Ensemble

In this paper, we present a cohort-based classification approach to the churn prediction for social on-line games. The original metric is proposed and tested on real data showing a good increase in revenue by churn preventing. The core of the approach contains such components as tree-based ensemble classifiers and threshold optimization by decision boundary.

متن کامل

Customers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms

With the fast development of digital systems and concomitant information technologies, there is certainly an incipient spirit in the extensive overall economy to put together digital Customer Relationship Management (CRM) systems. This slanting is further more palpable in the telecommunications industry, in which businesses turn out to be increasingly digitalized. Customer churn prediction is a...

متن کامل

Churn prediction in telecom using Random Forest and PSO based data balancing in combination with various feature selection strategies

The telecommunication industry faces fierce competition to retain customers, and therefore requires an efficient churn prediction model to monitor the customer’s churn. Enormous size, high dimensionality and imbalanced nature of telecommunication datasets are main hurdles in attaining the desired performance for churn prediction. In this study, we investigate the significance of a Particle Swar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014